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A sequence. of asymptotically normally clstributed estimators
of location is presented, having the property that, for any
e > 0, all estimators in the sequence beyond an appropriate
point have asymptotic variances within E of the Cramer-Rao
lower bound, uniformly for all symmetric distributions in a
non-paramtric family constrained only by regularity conditions.
The simplest non-trlvial estimator in this sequence already
possesses good efficiency-robustness properties, both asymp-
totically and for small sample sizes. This estimator is much
easier to compute than previously proposed estimators having
similar properties, and a good non-:arametric estimate of the
variance of the location estimator is produced as a byproduct,
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NON-PARA•• TRIC ESTIMATION OF LOCATION

by

M. V. Johns, Jr.

1. Introduction.

The problem of "efficiency-robust" estimation of location for

symmetric conttnuous distributions has been treated by a number of

authors (as noted in the text below) employing various optimality

criteria. The present paper develops a sequence of estimators, indexed

by an integer valued parameter k, exhibiting tte following rather

strong notion of asymptotic "efficiency-robustness": For any k the

corresponding estimator is consistent and asymptotically normally

distributed (as the sample size n increases) for any F in a large

subset 3 of the class of symmetric continuous distributions. Further-

more, for any E > 0 the variance of the limiting normal distribution

exceec.., the Cramer-Rao bound for F by no more than E uniformly for

all Ff3', for each sufficiently large k. Thus, for large k the

corresponding estimator is (nearly) Best Asymptotically Normal (d3AN)

for al! Fe I •

This concept of optimality is distinguished from some others des-

cribed below in that the class I is "non-parametric" and indeed con-

tains the simple parametric families used in other definitions.

Of greater significance is the fact that the simplest non-trivial

estimator in the proposed sequence (corresponding to k = 2) exhibits
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quite high efficiencies for small to moderate sample sizes (n = 10,20,40)

for a collection of diverse distributions consisting of the normal, the

Cauchy, the logistic, the double exponential, and the 10% contaminated

normal. These efficiencies relative to the best linear unbiased estimates

(BLUE) based on order statistics were obtained by Monte Carlo experiments.

The estimator seems slightly less efficient for short-tailed distribu-

tions compared to some competitors designed particularly for use with

such distributions, but it does considerably better for the long-tailed

Cauchy case. The asymptotic efficiency of the estimator may be computed

by hand without difficulty.

This estimator is no more difficult to compute than, say, a one

sample t-statistic, and the calculation Yields as a by-product a good

estimate of the variance of the location estimator so that approximate

confidence intervals and tests may be constructed. The author believes

this computational simplicity to be one of the most important features

of the proposed estimator since it enhances the possibility that it

may be found usefifl by statistical practitioners dealing with actual

data. Previously proposed procedures exhibiting comparable efficiency-

robustness require complex arithmetic manipulations and some involve

table lookups or matrix inversions. Considerations of simplicity have

previously motivated interest in very easily computable estimators such

as trimmed or Windsorized means, symmetric linear combinations of three

order statistics, etc. (see, e.g. Gastwirth and Cohen [7]). Such

estimators do not exhibit as broad a spectrum of efficiency-robustness

as those considered in this paper, nor are they associated with naturae.
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non-paratric estimates of their variances.

The various approaches to efficiency-robust estimation may for

convenience be classified into two categories: (1) those aehieving asymptotic

optimality for each member of a specified finite or parametric family

of distribution "shapes" (with unspecified scale parameters), and

(2) those achieving asymptotic optimality for all members of a non-

parametric family of distributions limited only by regularity conditions.

Examples of the first category of estimation procedures are given by

A. Birnbaum and his associates in [2], [5], [4], J. Gastwirth and

H. Rubin [ 6], R. V. Hogg [8], and V. Mik4 [10]. In these papers + .e

estimators depend explicitly on the parametric collection of distribu-

tion shapes chosen and "optimality" means the asymptotic achievement

of the Cram~r-Rao lower bound for the variance of the eatimator, or the

maximization of the minimum variance over thie specified family of dis-

tribution shapesor admissibility with respect to the family. In all

of these cases it is reasonable to expect (and has to some extent been

demonstrated) that the proposed estimators will be robust in the sense

of performing well for distributions which do not differ too much from

the families in terms of which they are defined. A related approach

uses the data to select one estimator from a small specified collection

of candidates. Such procedures have been proposed by P. Switzer [12]

and L. Jaeckel [9].

The approaches falling into the second category mentioned above

are inherently more ambitious in their goals since they aim at asymp-

totic optimality for all distributions in non-parametric families

constrained only by regularity conditions. Estimators are regarded

3I
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as optimal if they achieve the Cramdr-Rao bound asymptotically or if

they are BAN (or nearly BAN). The possibility of achieving this kind

of uniform efficiency was discussed as early as 1956 by C. Stein [ii].

Recent proposals for such uniformly efficient estimators have been

made by P. K. Bhattacharya (1], C. Van Eeden [14] and K. Takeuchi (13].

The first two of these papers suggest estimators involving pointwise

estimates of density functions and are likely to require rather large

samples to be effective. Takeuchi's ingenious sequence of estimators

(indexed by an integer k) is not only asymptotically optimal for

large values of k, but shows good small sample efficiency-robustness

(for small values of k). A natural non-parametric estimate of the

variance of the estimator is also provided.

The estimators proposed in the present naper fall into the second

category described above and (like those o. Hogg [8] and Takeuchi) they

are "quasi-linear" in that they are based on linear combinations of the

order statistics with the optimal coefficients being estimated from

the sample. The basic statistic from which the proposed estimators are

developed consists of a linear combination of the order statistics with

the coefficients constrained to be equal within each of several sets

corresponding to blocks of successive order statistics. Thus, the

number of distinct values assumed by the coefficients is some number k

which is less than the sample size n, and one can hope to use the

full sample to approximate the k optimal values for the coefficients.

This type of statistic does not seem to have been considered before in

the literature although it is similar in spirit to linear combinations 5
of selected sample quantiles, and such statistics have been discussed

4 t•S



at length in mny papers. The prepoe selmtine sbw im its Ma.

t•tic PrOWpexte a" ft%&U4 in Beiem s 9 In Section 3 the qMecial

cam k - 2 is diimuei mA seam emot Carlo rehults ae given. so

oa. ef the teorem stated in Seiotn 2 is outlined in the Appendix.

2. •. ? ,N.timatr.

let x,... 7 ,X2 represent indepdent. idntically 4istribA.d

eteervatiens with cocmom distributiem function F~x) - lp(z-) where

F isa maber of a family I of spmetric emtinuouis -4istribuiem

satisfying certain regularity conditions described below. !Ts,' -0

vpsents the median of F a. Let Yl <T5 Y2 ... L epresent the

ordered Xo's (i.e., the "order statistics"). Suppose that n is

even and let TI0ip0 *Tk be a partition of the integers 1l,2, - - 22.
k

where Tin consists of tin successive integers, so that I tin q/2

We first consider estimators of 9 of the form

"i n -ji .Tinn :vbr

)�in JET inand the .?,'s are constants satisfying1960"

Omlitien (2) insures that is a location invariant estimtor. Note

that the t. smallest and largest order statistics have been "trimd.ed'



from the estimtor . This permits the development of substantially

simpler formulae than would otherwise be possible. Suppose further that

Cin_ ' ci, i = 1,2,...,k, and tijnn-*pi, i =0,1,2,--.,k, as nf ,

k
Wbere for each i, p > 0 and p - Then we must also have

i=O
from (2)

k 1
(3) .c.P = C

wbere c = (cl,c 2 ,...,ck) and P = (PIP2,'pk) Under these assump-

tions and the regularity conditions on F given below, for fixed k

the sequence \/- (ekn -) is asymptotically normally distributed with
2

mean zero and variance ak given by

2 k k-- 2 E I: cio.aij..2c

where A = ((aij))kxk and the ai 'sl are defined as follows: Let

ti be the (p0+Pl+...+Pi)th quantile of F, i.e., F(tk) = pO+Pl+.-.Pi-l

for i 1, 2 -',k-l, and tk = 0 Tren for i = 1,2,-.,k

aii 2 f F(x)dx - 2  .xF(x)dx, and
i i-i

(5)

ai zaji (t J-i~ ti F(x)dx, i < j

6



The asymptotic normality of 9. and the expression for 2
6 nd thaxrsinfr 0 k follow

directly from Theorem 3, page 63, of Chernoff et al. [5].

At this point it is clear that since the &4s are invariant

under shifts, one could estimate them by replacing the ti's by their

saziple analogs and F(x) by the sample c.d.f. Fn(x) . One could

then choose the ci's so as to minimize (4) using the estimated a ij's

and use the resulting ci's in .kn * Such estimators would doubtless

be (nearly) BAN for all FE$ for sufficiently large k and small PO

(the trimming proportion). The computation of such estimates would,

however, be quite complicated and the minimization process would require

the inversion of a kxk matrix. We proceed, therefore, to introduce

some simplifying approximations.

For i = 1,2,--.,k let

i-i 1

(6) di = - and bi = p +Sj -Pi

Let

bl~b2l*,." bk(7) B 31b~~~b

and

(8) R = ((aij/didj))kk - B



where the aij's are given by (5).

Then if =(_Cl~ .,c) =(cldl, c2d2 , ... ckdk), and

=(pl/dlP21/d 2.,'"Pklk), we have from (4), (7) and (8)

(9) k= c(B+R)'

and condition (3) becomes

U.
nn 1

(10) c' = 2

It is shown in the Appendix that for the cases of interest the contri-

-~2.bution of cRc' to ak is negligible for large k . Hence we may -

minimize ak2 approximately by minimizing cBE' subject to condition (10).

k

A matrix of the form (7) is non-singular if the bi's are distinct,

and a straightforward Lagrange multiplier argument establishes that the J
Z =~ 1 - -1 -1--

vector Z minimizing cBc' subject to (10) is given by = 2(pB'p ) B p',
and the corresponding approximate minimum of 2' denoted by 3, is

given by ; denoted by _-i',is
-2 -- 1 -4B 1 -) -1given by aj = 2cBct = 2p ) . Now letting e = (el,e2,-..,ek)

he k
Il th -'where ei = d;I X (i component of B- p'), we may write

(-2 1 -1
(11) ,,k2 =-(•ep') I

and recalling that ci = ci/di, the (approximately) minimizing vector U
c is

(

I

I



The matrix B given by (7) is a Green's matrix and hence readily invert-

ible yielding the Jacobi matrix B'I = ((biJ))kk with

bi,i+l = bi+l,i = -2bbPi +P i+I J, 1 1,2,°-. , k-I

41 0o+14p 1+2p2(1)b (2p 0 +p 1)(p 1 +P2 _)

biii II2pi-l+pi+2 pi+l i
(Pi-l+Pi)(Pi+Pi+ ) 2,3,,k-

kk 2
Pk-l+Pk

and al other b = 0 Thus the components of the vector e are

(2p1(2p 0 +2p 1+p2 ) 3_ (2po
1 (2pi+(pil+P+p 2 ) i

(14) e 1 2p Lt(Pil+").Pi+p i+lp 2p i_+ I 2p i+l 1

1ih ei = ( ) pi+pi+1) Ii p,_p d,_, d,+p,

ek di 2 2,, 1+' k _k-l,

Note that for the special case p1 = P2  P Pk' the formula for

ei for i = 2,3,**',k-1 simplifies to

(15 e 112 1
i di di dii_ di+l

9



The only quantities appearing in (14) which depend on the distribu-

tion F are the di's which are differences of quantiles which may be

effectively estimated by their sample analogs. For each i let

be the sample quantile corresponding to and let d-.

(More explicit formulas for the a,'s are offered in Section 3). Let

e be the vector whose components ei' i = 1,2,*' ,k, are obtained from
A

(13) by replacing the di's by di.s Then following (11) and (12)

let

A2 . A "-1
(16) A2 ep , and

(17) A ^2^ck= -kn •

The proposed estimator of e (by analogy with (1)) is

A 1 k

(18) kn= i Sin

where is the ith component of c .

It has been assumed so far that n is even. The case of n odd

may be treated in various ways, perhaps the simplest of which is to

delete the sample median from the order statistics and compute c on

the basis of the even sample size n-l . The coefficient ck should

then be modified by multiplying by tk,n.l/(tk,n.l+l) and the sample

median should be added to S . Expression (18) may then be used

with the S i,nl'S replacing the S in's

1.

10$



To facilitate the discussion of the asymptotic behavior of 9 we
IM

shall assume that for each k,

(19) 1p2 . Pk k( - p P

i.e., each Sin for i > 1 is a sum of (approximately) 2 nq, successive

order statistics.

For any continuous, twice differentiable symmetric distribution

F(x) with density f(x), the Fisher information for a location parameter

when the np 0 smallest and np 0 largest order statistics have been

deleted ('trimmed") from a sample of size n is given by

(20) I(F,P0 ) =2f'(f (x))2(f~x))1ldx + 2?t)O'

where, as before, F(t 0 ) = PO (see, e.g. 151). The untrimmed (full

sample) case is obtained by setting p = 0 (t o ,), and eliminating

the second term on the right of (20). The Cramgr-Rao lower bound for

the variance of any estimator of location based on a trimmed sample of

size n is then (nI(F,p P)

We now define more precisely the family of distributions for which

the proposed estimator is shown to be asymptotically (nearly) efficient.

Definition. Let t be a family of symmetric continuous distribution

functions F(x) with corresponding density functions f(x) F'(x)

such that

211



(a) f(x) and its _Oirst three derivatives exist and

are continuous with f(x) > 0 for all x, and

xf(x) - 0 as x-_tw,

(b) f(x) and its first three derivatives are uni-

formly bounded for all FEA3,

(c) I(F,O) given by (20) is finite and uniformly

bounded away from zero for all Fca, and

(d) for each FcV the conditions of Theorem 3 of

[51 Pre satisfied for estimators of the form (1).

The asymptotic behavior of the proposed estimator is suimarized

in the following

Theorem: If and ^ are given by (18) and (16) respectively
kn Okn

and (19) is satisfied with the trimming proportion p0  held fixed,

then for any r > 0 there exists a k such that for each k > k C

for all FE%, the sequence ,'-( A-e ) is asymptotically normal
2

distributed with mean zero and variance 1r2(F), as n -+ w, where

(21) r2(F) < E

and furthermore, with probability approaching one as n -o,

(22) Ia- .) ) E

The proof of the theorem is deferred to the Appendix.

32



If the trimming proportion p0  is allowed to decrease we have the

following immediate

Corollary: Under the conditions of the theorem, for any E > 0, there

exist a k and p such that if the trimming proportion p0 = P

then for each k > k , for all Fe% the conclusions of the theorem

hold with I(F,pO) replaced by I(F,O) in (21).

Thus, for a suitable choice of k and p0  one can make as
0 Jkn

near to being BAN as desired, uniformly for all FE'0

The actual family 9 for which the results of the theorem and its

corollary hold is larger than that described in the above definition.

It is shown in the Appendix that these results hold for the double expo-

nential distribution (which is not in F as defined), and by implication,

for other distributions having a finite number of simple discontinuities

in f and fV

One can conclude from the thcorem that for any particular FE,

there exist sequences kn t and POn4 0, as n -- o, such that the

corresponding sequence of estimators ýk n (using trimming proportionsn
p 1) is BAN for F . Also a2 is a consistent estimator of (I(F,O))-

In order to assert the existence of a single pair of such sequences

yielding a sequence of estimators which is BAN for all Fcy it is neces-

sary to further restrict F so as to insure uniform convergence to

normality in the theorem cited from L5 ],. Questions concerning the rate

behavior of the kn and pOn sequences necessary for this uniform BAN

property can also be raised, These questions seem somewhat uninteresting

in view of the results of the next section wherein it is shown that very

small values of k suffice to produce good asymptotic efficiencies as

_ __ • •, • •.. . . ,• , i I-i- i I iI l 15



veil as good small sample performance.

3. The Cases k = 2 and k = 3. Asymptotic efficiency-robustness is

only a theoretical curiosity unless it is accompanied by satisfactory

performance for small and moderate sample sizes. The estimator k

given by (18) reduces to the familiar trimmed mean for the case k = 1,

so we concentrate on the next simplest cases where k = 2 or 3, with

particular emphasis on k = 2.

It is convenient to introduce certain notational simplifications

appropriate to the case of.small k and n . Referring to the quantities

involved in (1), let r -n S = t -i = t2n . k-l,n and

tk t 1 - r - (k-1)s . Thus, for k = 2,

r

SO,n = (Y J+Yn+l-j )'

r+s
(23) S ln = r (YJ+Yn+I-J)

j=r+1 '

S2'n =J=r+s+l

We now present explicit formulas for the estimates a, of

di = -i" i Any suitably defined sample analogs of Ei and ti-l
A ,

will suffice to define di but since ti represents the quantile which

is the upper endpoint of the quantile range corresponding to the sample

quantiles contributing to Sin and the lover endpoint of the corres-

ponding range for S it seems reasonable to choose for Ji the
i+ln

midpoint between the largest order statistic contributing to Sin and

14.



the smallest contr.ibuting to S This leads to estimates di+i, n

given by

A 1
di (Yr+is+Yr+is+ +Yn-r-(i-l)s +Yn-r-(i-l)s+l

(24) - Y r+(ii)s-Y r+(i-l)s+l n-r-is n-r-is+1 i=1,... •k-1)

Thus, for k =2 and even n, noting that P0 = rnf, P1  s/n, andA

P2 " t/n, we have from (14) and the definition of e,

A = 2(2r+2s~t'... I 12t1 1eI1 l(2r+s)(s+t't -~ Ai A2

(25) 1 2

2 ~ 2 12 T-

and from (16), (17), and (18),

A2 n(26) 02,n = SA and
2(el-.te 2)

A AS
A e 1S 1+eS2(27) 2 A22,n82,n =2(s ̂ t A

2se1 ite 2)

Similar simple formulas result for the caile k =.

For given values of p, pOl. and P2  and any particalar distri-

A
bution F, the asymptotic variance of e2,n may be calculated by firstaI

calculating the four a' s given by (5) and c (c ,c2 ) given by (12)

15



and then applying (4). Asymptotic variances for five cases were computed U

and the efficiencies relative to (I(F,O))-1 are shown below.

Table 1

A
Asymptotic Efficiencies for 92 when Po =05P P, P2 .225

Distribution Normal C.N.(.10) Cauchy Dble. Exp. Logisticj

fficiency ( 5 94. J 93.6 97.2 84.5 Sri.5

A Monte Carlo experiment was performed for the cases k - 2 and 3,

using 4000 replications, for the normal, contaminated normal (C.N.( .10),

Cauchy, double exponential, and logistic distributions. (The C.N.(.10)

distribution is a standard normal with a 10% contamination by a normal

with mean zero and variance = 9.) Sample sizes n - 10,20,40, and 80

were used, and the trimming proportion p0  (from each tail) was taken

to be .05 for all cases except n = 10 for which PO = .10 . For the

case k = 2, for n > 10, the quantities s and t were chosen in

three ways: i) 2s = t, ii) s = 2t, and (iii: s -t (subject to the

limitation that s and t must be positive integers with s + t = R - r.

For n = 10, a and t were set equal to two. The case k= 1  was

computed for n = 20,40, and 80 with p = .05 and s = t

Table 2 shows the mean squared errors (MSE) and relative efficiencies

of , andthe means of e-,, for the case k =, s t. Ideally i
of ,n 2,n

the small sample efficiencies should be computed relative to the variances

of the minima variance location invariant (Pitman) estimators, but these

were only available for the double exponential distribution (from
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Table 2

Efficiencies for Case k = 2, s t

Sample Size Distribution Var(BLUE) MSE(e6) n/n Eff.(82 n)

n = 10 Normal .1000 .1184 .0892 84%

C.N.(.10) .1358 .1488 .1245 91

Cauchy .3261 .•4229 .484•1 77

Dble. Exp. .1399 .1645 .1399 85

Logistic .3073 .3446 .2750 89

n 20 Normal .0500 .0579 .0525 86

C.N.(.1O) .0657 .0710 .0712 93

Cauchy .1256 .1304 .1429 96

Dble. Exp. .0637 .0703 .0707 91

Logistic .1520 .1668 .1573 9i

n 140O Normal .0250 .0284 .0281 88

C.N.(.l0) .0315* .0354 .0364 89

Cauchy .0500* .0589 .0646 85

Dble. Exp. .0297** .0333 .0353 89

Logistic .0750* .0817 .0822 92

n 80 Normal .0125 .0137 .o147 91

C.N.(.10) .0157* .0170 .0186 92

Cauchy .0250* .0269 .0300 93

Dble. Exp. .01o42* .0155 .0174 92

Logistic .0375 .0393 .0424 95

Crame~r-Rao bound Pitman estimator

17



Table 3

Confidence Interval Error Probabilities

>, (k=2, a -t)

Distribution Samle Size(n) 7 = 1.645 7 1.960 7 = 2.576

Norma3 10 .208 .143 .074

20 .145 .087 .039
40 .119 .066 .020

80 .095 .048 .0o1

C.N. (.10) 10 .196 .136 .068

20 .135 .o83 .036

40 .117 .x65 .021

80 .094 .050 .011

Cauchy 10 .1l48 .100 .047

20 .124 .076 .030
40 .112 .057 .017

80 .095 .xo48 . on

Dble. Exp. 10 .176 .120 .058
20 .128 .074 .x28

140 .111 .061 .015
80 .09 o44 .090

Logistic 10 .200 .138 .070

20 .14o .088 .o08

40 .117 o065 .019
8o .o94 .o48 .011

"t "-Dist. 10 .135 .082 .030
P{Itn-1 1 > 7) 20 .117 .65 .019

40 .1o8 .o57 .ou14
8o .io4 .o54 .012

Normal

P(IlI > .&.) 11 n .1OO .050 .010 ""

18



Table 4

"Best Case" Efficiencies (k = 2)

Sample Size

Distribution n=20 n=40 n=80

Best(s,t) Eff.(2n Best(s,t) Eff.(9,)

Normal (3,6) 90% (6,12) 90% (12,24) 94%

C.N.(.10) (3,6) 95 (6,12) 92 (12,24) 94

Cauchy (6,3) 100 (12,6) 87 (24,12) 96

Dble. Exp. (6,3) 92 (12,6) 93 (24,12) 97

Logistic (4,5) 92 (9,9) 92 (12,24) 96

Table 5

Ratio of Variance for k = 3 to Variance for k = 2

for the Case s, t

Distribution n--20 n=40 n=80

Normal 1.03 I. 07 1.05

C.N.(.10) 1.04 1.05 1.05

Cauchy 1.19 1.11 i.o8

Dble. Exp. 1.09 1.08 1.O6

Logistic 1.03 1.07 1.06

19



L-.

V. MKkj [10]). For the other distributions the variances of the BLUE's

were used when available, and for the larger sample sizes the Cramer-Rao

bounds were used which accounts for the apparent slight drop in several

of the efficiencies at n=4 0 compared to those at n=20. The fact

"uhat the efficiencies shown for the double exponential case are relatively

high compared to the asymptotic value given in Table 1 is a consequence

of the rather slow rate at which the variance of the Pitman estimator

approaches its asymptotic value as the sample size increases.

Table 3 shows the estimated error (non-coverage) probabilities for

confidence intervals of the form e2,n j+ yn c2 ,n. The values of 7

were taken (arbitrarily) to be percentage points of the standard normal

distribution. For comparison purposes the error probabilities are

given for each n for the corresponding confidence intervals based

on the t-distribution (assuming normally distributed observations).A''
The distribution of the "studentized" ,!rsion of 02,n shows a some-

what greater spread than the corresponding t-distribution for the

smaller sample sizes. For each pair of values of n and y the error

probabilities are rather similar for all five of the distributions

considered, and they do not differ much from those for the corresponding -.

t-distribution for n--O and 80.

Table 4 shows for each distribution the most favorable pair of vslues j
of s and t (among the three possibilities tested for each n) togetuer

with the corresponding efficiencies for n = 20, 40 and 80. For all I

I
I
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three sample sizes the large values of t, leading to large groups of

central order statistics receiving weight c2, tend to be favorable for

the relatively short-tailed distributions (normal, contaminated normal,

and logistic), while the reverse is true for the long-tailed cases

(Cauchy and double exponential). This provides considerable justifica-

tion for the choice s = t as a suitable compromise.

A
Table 5 shows the ratio of the variance of e to the variance

3,n

of g~nwhen s -t, for n = 20,140., and 80, for each of the five

distributions. The uniform superiority of the estimator using k = 2

must be attributed to the additional sampling fluctuation introduced

when an additional coefficient is estimated in the case k = 3, together

with the fact that the efficiencies are already high for the case k = 2.

In a preliminary Monte Carlo investigation, larger values of k were

considered and in all cases the variances of the estimators for a given

sample size tended to increase with increasing k

In interpreting the Monte Carlo results given above it should be

borne in mind that the standA.rd deviation associated with each of the

efficiencies is on the order of two percentage points. It is perhaps

worth mentioning that the ordinary congruence-type pseudo-random numbers

proved to be completely inadequate for this investigation, and it was

found necessary to introduce a suitable "re-randomization" procedure.
A

The possibility exists that the performance of the estimator ,
2,n

could be slightly improved by a minor modification as indicated in the

following

Remark. The quantities A1 and a2 appearing in the definition (27)

21
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A

or 9. are of the form
of2,n

A -2 )-3
e1 =a.'L 2'"1'2'

A A 21e2  • -d -D 2  -O ,

where aii, i = 1,2, are determined by (25). Since the formulae given

in (25) were obtained by an asymptotic argument valid for large k, it

is remarkable that they work well for k = 2. It seems entirely possible

that a somewhat different choice for the ai ls and D, Is could result

in uniformly improved performance. The author conjectures that a slight

modification of a1 (only) could lead to improved efficiency for short-

tailed distributions like the normal wthout materially impairing the per-

formance of the estimator for long-tailed distributions.

4cknowledgement. The author wishes to expresa his gratitude for the

significant contribution of Mrs. Elizabeth Hinkley who performed the

Monte Carlo experiments reported in this paper.
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Appendix

To prove the theorem of Section 2 we first show that rn (en,-e) is

asymptotically normal with mean zero and variance

(28) 2< 1(,o + ,

for arbitrary fixed E > 0, for each sufficiently large k, for all

Fe I, when 9kn is given by (1) with the c i's given by (12). The

validity of (20) follows from conditions (a) and (c) of the definition

of & , and asymptotic normality follows from condition (d). By

virtue of expression (9) it therefore suffices to show (i) that (28)

2
holds with ak replaced by ak given by (11), and (ii) that

IcR C' I < E for all sufficiently large k, for all Fe e'.

To verify assertion (i), let F (u)=G(.), and referring to (19)

let ri = pO+(i-l)qk. Then by definition (6) of di we may write

di = G(r i+q k)-G(r) I i~l,2,...,k,

di+1 = G(ri+2qk)-G(ri+q) i=,2,...,k-1,

di, = G(r i=2,,...,k

Now let Gj, G" and G"' represent the first three derivatives of G

evaluated at r Then under conditions (a) and (b) of the definition

of Y , a straightforward Taylor's series expansion in terms of qk

yields

23
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•I-1 1-] -2di k 2 i -

di=l qk(GI) IF(GI) -2 G,,1 ,, 2 , - (G')'2+ q2

di 2

where • represents a generic uniformly bounded function of i, k,

and G. Hence by (15), for i=2,5,...,k-l,

ei [2(G) 2 (G,) -G"' (Gi')-]

Letting fiP Vl, and f" be f and its corresponding derivatives
i

evaluated at G(r i) we have

G• (irf, G' = -fl(i)-3 , G", = 3(f i)(-5_1  4

so that e1 = -[ I(f')'l-j f 1)-2 + .

Also, writing

( G(- -q)-G(- - 2q )

and referring to (1 4 ),we obtain by a similar calculation

(29) ek G.. G"( G'(~] f 0 + tq

I2
I I
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Hence, as k -- 0 ,

(50) qk I ei~*L 1f"(G(ii)~3~ [f G(u)) du,i=2 o f(G(u)) - f(G(u))

f- log f(x)}f(x)dx f (f'(x))2(f(x)-) 1 dx + f'JG(Po) &• (po) •

and the convergence is uniform for all Fe . Again referring to (14),

we obtain

_-J 1 2

Thus, from (ii), (19), (20), (30) and (31) we have

k2q [ ei -* l(F, p0

as k -+,P uniformly for all Fe This together with condition (c)

of the definition of -: implies the truth of assertion (i).

To prove assertion (ii), let the elements of the matrix R given

by (8) be denoted by rij, i,J=1,2,...,k. Then by (5) and (6) we have

for i < j

/G(r ÷+)
r =r, d- " r f(x)dx -b ,
ri rj di JG(ri)

and
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•(r i+q ) [ (r i+q )

i i { ik) fG(ri) f (ri) }J

where by (6) and (19), bi = r + 1

Expansion in Taylor's series with respect to qk yields for i < J,

i2 2

rl -r + I qG'if, + 2q-bi = tq 2
ii2 kii i k

and

i i +qkq

Since qk= k-l(! -pO) we see that r O(k ) uniformly in
2 ii

i,j and Fe 3ý for iiJ, and rn z O(k"I) uniformly in i and

FE 3 . Furthermore, since ci = c d where the c s are given by

(12) we see that O'. = O(k") uniformly in i and Fe y, so that1.

-CR' = O(k12), uniformly in Fe 3 which proves assertion (ii).

Conclusion (21) of the theorem follows from (28) provided that for

any fixed k, n (ekn-ekn) -. 0, in probability, as n -**, since then

T k(F) = a k But from (18) we have

k
rn(0'k-() =in l (C i-ol( S in)".

Now the ci's given by (17) are consistent estimates of the corres-

A
ponding ci's given by (12) since the d's are consistent estimates

ii

of the corresponding di' s. The desired result follows from the

26



boundedness, in probabil.ty, oi the quantities Sin as n- .

Conclusion (22) now follows from the fact that 92 is a consistent estimate
k

-2 2
of ak which by assertion (ii) is uniformly close to ak for sufficiently

large k. This completes the proof of the theorem.

We consider now the double exponential distribution with density

f(x) = 1 e- •. The expressions for ei obtained above are valid for

i=l,2,...,k-l. From (31) we see that eI = • for this case. Also

62 k-i
- log f(x) = O, for x < O, so that qk l=ei -*0, as k -im.

Expression (29) for ek is not valid for this case since f' (x) is

not continuous at x = 0. Direct calculation shows that ek = 4q- +O(1).

Therefore, in the limit, the only non-zero ci is ck, so that, as k

increases, ekn is essentially an average of a decreasing proportion of

central order statistics. The conclusions of the theorem are clearly

A
correct for the corresponding sequence ekn even though the double

exponential distribution is not in the family • as defined.
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